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A BS T R A C T

A continuous state space model for the problem of dynamic routing in

data commun i cation networks has been recently proposed. In this paper

..~~ present an a lgor it hm for f inding the feedback ~o iut ion to the a s s o c i a t e d

linear optima l con tro l problem with linear state and control variable

i nequality constraints when the inputs are assumed to be constant in time.

The Constructive Dynamic Programmi ng A lgorithm , as it is ca lled , emp loys

a combination of necessary conditions , dynamic programming and linear

programm i ng to construct a set of convex polyhedral cones which cover

the admissible state space with optima l controls. Due to severa l corn-

p lica t ing features which appear in the genera l case the algorithm is

presented in a conceptua l form which may serve as a framework for the

development of numerica l schemes for special situations. In this vain

the authors present in a forthcoming paper the case of sIng le destination

network problems with all equa l we i ghtings in the cost functional.
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I. I N T R O D U C T I O N

A da ta commun i cation network is a faci1i ~~y which interconnects a

number of da ta dev ices , such .~~ ca ~~ters and te rmi na ls , by comm u n i c a t ion

channe ~ for t u e  purpose of u~ uu~ .;ui an of ~~~~~ between them. ~~~~~

device can use the network to access som e or all of the resource s ava il-

able throughout the network. These resources consist pri m arily of

computation a i power , memory capacit~~, data bases and spec ial i zed hard-

ware and software. With the rapidl y expanding role being played by da ta

p roce s s ing  i n today ’ s soc ie ty i t i s c l e a r  tha t the s h a r i n g  of cos t l y

computer resources is an eventua l , i f not current , desirabili ty. In

recogni tion of this fact , research i n  da ta comun ica t ion ne tworks began

in the early 1 960’s and has blossomed into a sizeable effort in the

1970’s. A varie ty of data networks have been desi gned , construc ted and

imple mented with encouraging success.

We begin our discussion wi th a brief description of the basic com-

ponents of a data commun i cation network and their respective functions.

For more detail , refer to (I]. Fundamentall y, wha t is known as the

convw.~nication suhnetwork consists of a c o l l e c t i o n  of nodes wh ich  exchange

data with each other through a set of connective links . Each node

essentiall y consists of a minicomputer and associated devices which may

possess da t a storage capability and which serve the function of directing

data wh ich passes through the node. The links are data transmission

channels of a g ive n rate capacity. The data dev i ces which utilize the

service of the coninunication subne twork , known as users , insert data

_____ — ._b
~~
.
~~
—!.:~~~~~~~~

--
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into and receive data from the subnetwork through the nodes.

The data traveling through the network is organized into messages,

which are col lect ions of bits wh i ch convey some information. In this

paper we shall be concerned wi th the class of retwo rks wh i c h  cont a i n

message storage capability at the nodes , known as atora—and—foi~ ard

neiz,orks . The method by which messages are sent through the network

from node of ori g in to node of destination is according to the techn i que

known as reessaqe switching~ in which only one link at a time is used

for the transmission of a given message. Starting at the source node ,

the message is stored at the node until its tir~e comes to be transmitted

on an outgoing link to a nei ghboring node. Having arrived at tha t node

it is once again stored in its entirity until being transmitted to the

next node. The message continues in - this fashion to traverse links and

wait at nodes until it finally reaches its destination node. At tha t

point it leaves the commun i cation subr~etwork by being i mmediately trans-

mitted to the approprl~ te user.

Frequent use is made of a special type of message sw i tching known as

packet switching. This is fundamentally the same as message switching,

except that a message is decomposed into smaller pieces of maximum length

called packets. These packets are properly i dentified and work their way

through the network in the fashion of message sw i tching. Once all of the

packets belong i ng to a given message arrive at the destination node, the

message is reassembled and delive red to the appropriate user. Hence-

for th , any mention of message or message switching will app ly equally as

~~~
:— —

--— —
~~ ~~~~ -— - — -- -- — - - ~~~ 
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— - -~~~ 
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well to packets or packet switching.

The problems of routing messages through the network from their nodes

of ori gin to their nodes of destinatio n is one of the fundamental issues

involved in the operation of networks . As such , it has rece i ved consid-

erab le attention in the data comunication network literature. It is

clear that the efficiency with which messages are sent to their destin-

ations determines to a great extent the desirability of networking data

devices. The subjective term effic i ent ’ may be interpreted mathema t-

ically in many ways , depending on the specific goals of the networks for

which the routing procedure is being desi gned . For example , one may wish

to minimize tota l message delay, maximize message throug hput , etc.

In this paper we shall restrict attent ion to the rri ni,m~m delay message

rou~~ng problem.

In order to arrive at a routing procedure for a data-commun i cation

network one must begin with some representation of the system in the form

of a mathematica l model. As is always the case , there are a number of

important considerations which enter into the choice of an appropriate

model. Fi rstl y, one wishes the model to resemble the nature of the actua l

system as closel y as possible — for instance , if the system is dynamic

the model should be capable of simulating its motions. Secondly, the

model should describe the system ’s behavior directl y at the leve l in which

one is interested — not too specific or not too general. Finall y, the

model should be of some use in analyzing or controlling the ult imate

behavior of the system.

- 
— 

- 
- ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~
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I t .  THE MODEL FOR DYNAMIC ROUTING Ill D A T A  COM M UN I CATION NETWORKS

We now describe the model presented in [2]. For a network of N nodes

le t N denote the set of nodes and L the set of inks . All links are

taken to be simp l ex and. (i ,k) deno tes the link connecting node i to

node k w i th capaci ty C ik  (in uni ts of traffic/unit time) . Attention

is restricted to the case in which all the inputs to the network are

de terministic funct i ons of time . The message flow dynam i cs a re  g i v e n  by:

~~(t) 
= a~ (t) 

- 
~ u~ (t) + ~ u~ .(t) (i)

I I 
k€E(i) 

ik 
~Ei(’) 

2.i 
. -

i ,j € ?1, j  ~ i

where

xt ~(t )  = continuous state variable which approximates the amount of

data traffic (measured in messages , packets , b i t s , etc.)

at node at time t whose destination is node j ,  i~Lj .

a~ (t) = instantaneous rate of traffic input at node i at t ime t
with destination j.

u lk (t) = control variable which represents that portion of C ik
used at time t for messages with destination j .

E(i) = collection of nodes k such that (i ,k) € L.

1(i) collec tion of nodes 2. such tha t (t ,i )  € L.

We have the poS itivi ty constraints

x~(t) ~~O (2)

u .k ( t)  ~~O 
(
~

)

~ - .-~~~~~~~~
-
- -• -  
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and the link capac i ty constraints are

~ U •~~~( t )  
~ 

C 1~~, 
(I ,:~) € L , j € N . (4)

j~~i 
I

The goa l is to empty the network of its cu rrent message

storage in the presence of inputs in such a fashion as to minimize

the total delay experienced by all the messages t raveling through

the network. Conside r the cost functio nal

t f

J = J [ ~ cs~x~ (t)]dt (5)

~ 
i ,jEM ‘

0 J~ i

• where tf is such that

x~(tf
) — 0 i,j € N , j  ,~ i . (6)

It is demonstrated in [2) that when 1 Vi ,j E N , J ,~ i , expression

(5) Is exact ly  equal to the total de l ay . Priorities may be Incorporated

by takIng the wei ghtings ci~ to be unequal.

For convenience we define the column vectors x , u, a , C and a to

be consistent ly orde red concatenatIons of the state var Iables , control

variables , inputs , link capacItIes and we l ghtings respective ly. In

thIs pape r we shall not be concerned wIth the particular orderIng .

Denote n — dlm (x) — d lm(a) — dim(s), m — dlm (u ) and r — dim(C).

Equation (l)-(6) may then be expressed in the vector form:

________________ — — ‘i-—---— 
—V .—- •-_ - .  

• — — -— -.~~ ... ‘ ‘- ‘u- ..... .. 
‘
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D~~~~ics ~ (t )  — B u(t) + a(t) (7)

Boundary Canditiona x (t
0) ~~ 

; x(t~ ) 0 (8)

.: ~~~ ~~~~~~~~~~~~~~ x( t )  ‘ 0 Vt  € 
~~o’ f

3

C’ontrol C’onstrainta U Vt € [t P t f
] ( 10)

u ( t )  “ o

t f

(~oat ~~~c~~~ zai ~ a~
’
x ( t ) ~~t (Ii)

In (7) B i s  the nxm incidence matrix composed of 0’s , +1’ s and

_ l m s associated with the flow equations (1) and D is the rxm matrix

composed of 0’s and 1 1 s corresponding to (4). We now exp ress the

linear optima l control prob l em with linear state and control variable

inequality constraints wh i ch represents the data communication network

closed-loop dynamic routing problem:

Optima l Control Pro blem

P~nd the set of controls u as a ftou,tior. ~f  timo imd state

u(t) ~ u(t ,x) t € [t~ ,t ,~) (12)

that brings ~ ay initial condi tion x(t
0
) = x

0 to the final cond-

ition x(tf
) — 0 ~ id m inimizes the cost ‘~ctional (2 1 )  subject

_ _ _

~~~

-

~~~~~~~~~~ 

•--

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ 
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~ ~- , ‘o ; - )  ~Y t c j  rh, r~: c ZYt~ I r i i z r i ~t!~ ~c in,~~uu Ii ty

~~e z ~~~~’.~ :~~~t 0 (~~)_ (J~~1~

Several assumpt ions have been made in orde r to f a c i l i tate the

~:oJe I 1 m g  amid ~.~~Iutiuii . T1IO,~ a m c  • iei~. di ~~~~~ b rIcf ~ ’,- .

(i~ iu”ir- ’u~nua 6tsa t~ variublia. Strictly speaking, the state var-

iables are discrete wi th quantizat lon leve l being the unit of traffic

cc.tc.cte d. The assumptIon is Ju stified by rec ogni ?ing that any cin g le

message contributes little to the overall behavior of the network ;

the refore, it i s  unn ecessar y to look in d i v i d ua l ! y a t each of the

messages and its length.

(it) £~teretiniatic inputs. Computer networks almos t always ope rate In

a stochastic user demand environment. It is suggested in [2] that the

determInistic approach may take stochastic inputs Into accoun t apprOx

Imately by util I zIng the ensemb le average rates of the inputs to gen-

erate nominal t rajectorIes. Also , valuab le insi ght into the stochastic

situatIon may be ga i ned by solving the more tractable deterministic

problem.

( i i i )  Centr alized Contro l l e r .  This Is Imp l ied by the form of the

contro l law u(t) ~ u(t , x). This assumptIon may be valid In the case of

small networks. Also , obtainIng the op t ima l  s t r a t e g y  under this assumption

could prove extremely useful in deter m ining the subopt ima lity of certain

decent rat Ized schemes.

- - - ‘iSt IL~~ Ft Li ~ 
- — .
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(iv) T~:r ~~r.-f te capacity buffers . Message buffers are of course of

finite capacity This may be taken into account by i mposing upper

bounds on the state variables , but this is not done in the current

1 ys is.

( v ) A~~ ~t it~’ ~~r~ab les go ~o zei’~ 2~ t f. Dur ing norma l network

operation the message backlogs at the nodes almost never go to zero.

Our assumption may correspond to the situation in which one

wishes to dispose of message backlogs for the purpose of temporaril y

rel ieving congestion locall y in time .

--—
~~ 

—
~
. ....

~~~~~~ — 
• 
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I I I .  FEEDBACK SOLUTI ON FUNDAM ENTA L S

We begin by presenting the necessary conditions of opti mality

for the general deterministic inputs case.

Theorem I (Necessary Condi tions)

let the scalar functiona l h be defined is follows :

h(u (t) . x ( t )  ) ‘~ ~
T

i. ) (t) X
T
(t) [B u (t) + t~(t )  :. ( 13 )

A necessary condition for the control law u*(.) € U to be optima l

for prob l em (7) - (12) is tha t it minimize h pointwise in time ,

namely

!
T(t)6~~~

(t) c A T(t)B u(t) (14)

V u(t ) € U Vt € (t~~ t f ].

The costate A(t) is poss ib l y a discontinuous function which s a t i s f i e s

the followIng differential equa tion

-dA( t )  — czdt + d~ (t), t € [t0~tf] (15)

-
~~ - - • .iT _ iT—=-l

~~~~~~~~~~~~ ~~~~~~~ T . 
‘:-‘ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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w~ -re cornponentwise dn(t) sat i ’ f i e ~ the I L l  ‘ C L i nq  cerrp leme ntary

s la...kness

0 ‘vt t [t , t .]

dn! (t) 0 i ,j tT N, i ~ i. ( 1 7)

The terminal boundary condition for the ~o~ :ute d m I f e m - ent i ,i l

eq uat ion  is

X(t f) — V free (18)

and the transversa lity condition is

xT(t~~~(t) — 0. (19)

Finall y, the function h is everywhere continuous , I . e.

h(u(t ), A (t )) — h (u (t~ ),X(t
” ) )  V t € ( t0~ t f

]. (20)

Proof: In [61 a generalized Kuhn-Tucker theorem In a Banach space

for the minImIza tion of a differentiable function subject to i nequali ty

constraints is presented . For our problem , it calls for the formation

of the Lagrang ian

- - ~~~~~~~~~~~~~~~~
—

- - 
V — • . -- .-—-V~~~~~~~~~~~~ - • .-
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t~ t f

~ 
T )~ •. \

l• ( )  (P u (r~ ÷ — ( t )  Id:

(21)

I T .~~ T
I - 

~~ 
) I ~ _• ~~~~ f)

t
0

an n ” i  v e c t o r  a d j o i n i n q  th~ state con~.t~ jint s wh i ch

~ f ~~ t ~~ C C l ~~ i ~~~~~~~ a rv ~ I.~ Ln ~~ s con di t i on .1 t opt ~r~i 1 it v

t
f

J ~I T
~~’) ~~( t )  .

0

~ 0 Vi t~ [ t
0

, t
1
. I .  (23)

The vector v which adjoins the final condition Is an n~ 1 vector

of . i r  hit rar~ con~ t a i t t ~~

For u*(.) to he optIma l J must be minimi zed at u*(.), where

x(), x(t
f

) and are ~~~~~~~~~~~~ and u €  U. Taking the

di fferential of ,J with respect to arbitrary variations of x(~),

and t f we obtain

t f
dJ J ~

T
~Sx(i )di + ciTx (tf)dt f

to
t f t f

- \T(ihSi (t)dt + J dn
T
(t).Sx(:) + vTdx(t f

) (24)

_______________________________________ ,-‘—‘
~~~~

. — 
-V —
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whe re Sx is the variation in x for time held fixed and

dx(t
f
) = 6x(t

f
) + ~(t f

)dt
f (25)

is  the total diffe rential of x (t
f) . We next integrate the third

te rm of (21+) by parts , substitute for dx (tf) from (25) and take

into accoun t that ~x (t ) — 0 to obtain

t f

dJ = J T
() [c~dr + dn (-r ) + dX (r) + 1

T 
- .T()  )Sx(t

f
) (26)

to

T
+ [~~ x(t~) + v x(t

f
) ]dt

f
. p

how , in orde r for J to be stationary with respect to the free

variation s óx(t), 6x(t~) and dt f we must have

ctd~ + dri (r) + dA( ’r ) — 0 (27)

A(t f) — v v free (28)

v
T
~ (t f

) — A ( t f
)x ( t

f
) — 

T (t) (29)

Equat ions (22) and (23) together with the constraints x 0 imp ly

drr (t)x~(t) — 0 Vt € (t 0~ t f ] i ,j € N, j  ~ i . (30)

_ _ _ _ _ _ _ _ _ _ _  - — ~~~~ - 
- 

-

- 

_ _ _ _ _ _ _ _ _ _ _ _
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t
f

I f ..e i n t egrate the term J \ T ( t ) ~~( t ) d t  by parts in equation

0

(21) and substitute equations (22) and (27)— ~ 29) i nto (21) we obtain

t f

+ a (t)]dt . (31)

in orde r b r  J to he m i n i m i z e d  w i t h  respect to u() € U , th e term

3 u(r) must cl early be m i n i m i z e d  p o i n t w i s e  in t ime , tha t is

~T()6 .~() .L~ \T() B ()  Vu(t) € U , t € [t~~t f ]. (32)

Thus , we have accounted for Equation (14) , l e a v i n g  o n l y  (20) to be proven .

To this end , let us assume that we have an optima l state trajectory

x*(t) and associated costate trajectory x(t), t € [t0~tf]~ Then by the

p r i n c i p l e  of opti m a lity, for any fixed t ~ t
f P  

the functions x* (t) and

\(t), t € (t0, r i ,  are optima l state and costate trajectories which carry

the state from to x (-t). Hence, all of our previous conditions

apply on [t
0
, t i  w i t h  x(t f) — x (T). Apply ing the transversa lity con-

ditio r , (29 ) at t f = r , we obta in

_ciTx(t) (33)

Since Equation (33) ho l ds for all r € (t Q ,t f] and x (t) is everywhere

continuous , then A T (t ) x ( r )  mus t be everywhere contInuous . This proves

Equation (20).
0

- V -V VV -V~~~~~~~_~~~~~~~~~~ _ _
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We shall now describe the behavior of the costate variables as

functions of the corresponding state va riables. We dist inguish between

the case when > 0 (x 1
~ is said to be on an interior arc) and when

0 is said to be on a boundary a r c )  . .Then x~ i s  on an

:r ~~~~~~or mr~ Equation (16) imp l ies drr~ 0 and Equat ion (15) can

be differen tial with respect to time to obtain

— ( t) = -.
~~ 

. 
(34)

When x~ i s  on a ‘~~~~ ‘: 
V
-

~r~~ 
it s cost az~ i s  p o s s ib l y discont-

inuous , depen d i n g  upon the na tu re of n~ . At po ints for which rv~ is

absolu tely continuous we define ~~~(t )  ~ dn~~(t)/dt . Different iating (15)

with respec t to t i m e  and taking in to account (16) and (17) we obtain:

-i~(t) - czj + ~~ ( t ) u~ (t) ~~O. (35)

On the other hand , at times when n~ 
experiences a j ump of magnitude

we have fro m Equations (l5)-(l7) tha t ~ experiences the jump

— -~ n~ ~~0. 
(36)

It is not difficul t to see that the costate vector may be non-

unique for a g i ven optima l trajectory — this is a fundamenta’ charac-

teristic of the state constrained prob l em. Previous works such as (6]

have found this rionuniqueneSs to occur in costates corresponding to

sta te variables which are on boundary arcs. However , due to the fact

_ _  -V
V - -  -m- - .~~ 
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t h3t in our case the po i n twise m i n H z a t i o n  k a linear program , t h i s

ncnun iquene~ s may also be exhiL te~ ~~ costates corresponding to state

v ari abi es which are on interior arcs. This behavior is demonstrated in

Exa ple 3 .5 of [5J, pages l86-1S9 .

In generai , any trajectory which satisfies a set of necessary

cond i tions is an extrema l , and as such is merely a candidate for an

optima l trajectory . Fortunatel y, i n  our  p r o b l e m  it turns out that any

s~ ch CXtLiCC’3l t :~~j ec~~ ry is act~~ l l y c p : i m~~~
l , as is shc.-.n in the fo llc ~.i ng

theorem .

Theorem 2 The necessary co r rd i t i c ns  of Theorem 1 are sufficient.

Proof. Let x’~(t), u’~(t), k( t) and rl (t) satisfy (7)-(J0) and the

necessary conditions of Theorem 1. A i so let , x(t) and u(t) be w~y

state and contro l trajectory satisf y ing (7)—(10) . If we consider

6J J(x) - J(x ’) we have

tf

= — x*(t))dr. (37)

Substituting from (15) and expanding we obtain

t f

j (—x T(r)dX(-r) - 
T ( ) d ( )  (38)

to
+ ~.

T
~~~dx( ) +

V 

-V-V -V

~~~~
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From Equa t ion (22)

t f

J ~~~~~~~~~ = 0. (39 )
to

~.e fl~~-~~ i n t egrate m e  ~~~~~~~~ a r - ~~ L~ i I C ~~ ~~ ~~~
- r~~~~t ~~~ c o2 ~~~~

by ~‘arts , take into account x(t0) 
- x~~ t0

) x~~~~f
) = x~~ t )  = 0

and f i n a l l y  substitute from (7) to to obtain

t
f 

t f

- V ( \ ~~~~~ - 
~~

‘ ( T ) ~~~~~~~~~ (1+ 0)

B ut by (11+)

t
f

— u~ (r))d r >0 (1+ 1 )

and si nce x (-t) ~~O and d~~(r) ~~0 we have

t
f
I T

~~ d ( )  ~~o. (1+2)

Therefore , âJ >0 Vu(~ ) € Li , x (.) >0

D

From i nequali ty (11+) of the necessary conditions we see that the

optima l control function u *(~ ) is g i ven at every time r € [t
0~

tf]

by the solution to the following linear program with decision vector u(t):

= ARG MIN [~
T(t)~~~.( r) ]  . (143)

u(t) EU

— 
~~~~~~~~~~~~~~~~~~~~~~~~~ V -
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This is a for tui tous situation , since much is known about charac—

ter izing and finding solutions of linear programs in general . We know ,

for instance , that opt i ma l solutions always lie on the boundary of the

convex polyhedra l constra i nt reg ion U. However , for the special forms

of the matrices B and D which correspond to our network problem

we may proceed immedia tel y to represent expl icitl y the so lu t ion of the

poin twise (in time) linea r program. The minimization can actually be

performed by considering ona link a time . Consider the link ( i ,k)

and a possible set of associated controls:

1 2 i—I i+1 N
u.k,u .k,... ~U•k 

, u.~ , . ..  
~Ui k  

p

a given contro l variable may appear in one of the two following ways :

I) u~ enters into exactly two state equations :

= uik
(t )  +. . .+

(44)

~

(t) = +u.k(t) +
. . .+

2) u
~k enters into exactly one state equa t ion :

~~(t) 
= u.k +.. .+ a~ . (4 5)

Hence , all controls on link (i ,k) contribute the following terms

to ATB :

E (A~ — 

~~
)u
~k
(t) (46)

j ,’i 
I I  -

where A~ (t) 0.

_____ ~
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are a of o~’t im~tl  t r o l s  and associa ted contro l sn..’itch time

Ot ’ :’nt”- ” which bring the state x optimall y to 0 on t E [t0~ t f
]~

where u
1~ 

is the optima l control on t € [t~,,t~~ 1
], p € (0,1 ,... ,f 1].

An addition al property of a given optima l t rajectory that shall be

of i n t e r e s t  is wh ich  state variables travel on boundary arcs and over

what periods of time. This informat ion is summarized in the follow i ng

definitions:

Def inition 2:

B ~ {x -~ x~~(T ) = 0 , r € (t , t~~ 1
) }

is the set of state variables travel ing on boundary arcs during the

applica tion of ii

Defini tion 3:

8(x) 
~~o’

81’’’’ ‘6f-1 1

is the sequence of sets 8~ correspond i ng to the app lica tion of U(x)

on T(x). 5(x) is referred to as the boundary 8aqUeflCe .

In preparation for the deve l opment of the feedback solution we present

the following corollary to Theorem 1 which narrows down the freedom of the

V costates at the fina l time ind i cated by necessary condition (18).

Corollary 2 (constant inputs)

If any state variable , say x~ , is strict~~’ ~.ositive on the time

- ~~~~~~~~ 
~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ A
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i nterva l (t f 1 ~~t f I of an opt~ iiia i t ra ject or-~ , t hen ~~‘( t
1) 0.

Proof. Consider a specific state var iable x~ satisf y ing the hypothesi s .

By Corollary I we have x
~
(1
~
) . 0 sInc~~~~,~~(t t is constant for

E t t f 1 ~~t f l~ Therefore , there must csis t a di r ec te d chain or links

from node i to node L (arbi tr a r il y denote t hem by ((i ,i+ 1) ,(i+ 1 ,i+2) ,

(k— l ,k)}) carrying some messages w ith des tir a~~ion k , that is

k . k - k

u ; . ÷1 11 f) > 0, ~~~~~~~~~~~ 0 uk_ l k (tf) 0.

We now recall tha t messages may only fl ow o ?tima l ly in the direct i on

of a non-positive costate difference . The sequence of costate values p

(A~ (t f). 
X~~ 1

(t
f
)) . . .  , A~ _ 1 (t~ )) mus t therefore be non-increasing from

I to k-l and since X~ (tf) 
= 0 we must have \~~ 1 (t f) 

>0. Consequen tl y ,

a l l members of the above costate sequence are non -n eg a t i v e .

We now proceed to show by contradict ion that k~ (tf) 0. Suppose

X~ (t f) > 0. Then the transversality condition .E.~
T(t f~

’.’t_ ) 0 N’plies
I ,., 

—

that there mus t be at least one (I f) 
c 0 such tha t ~!(tf) < 0. But

the above reason i ng applied to impl ies that \ V~~~ ( t
f

) >0. Hence

a con tradiction.

0

- 
— V -— - 1~~

-T
~~~~ ~~

- 
~_

i-_
~~~~~~

L 
— 

—- - 

~~~~~~~~~~~~~~~~~~~~~~~ V.A
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(V. GEOMETR ICAL CHARACTER IZATION OF THE FEECBACK SPAC E FOR CONSTANT INPUTS

Our solution to the feedback contro l probiem shall be based upon

the oo~o~ r~~ “ i of reg i ons i n the admissible state space to each of

~e ~~~~:at.~ a f~ as~ h le ;~ ‘;~ t n e ~ (.c’ntre’ls ) .~h i c h  i~ cp t i ;- a l -~i th in

th at reg io n. The set of such reg ions to be constructed w i l l  cover the

entire admissib l e state space , and therefore the set of associated optima l

• cent ro ls w i l l  comprise the feedback solution . In order to ass ist in the

systcmatic construction of these r-:cnion s , we focus attention on regions

.-~it h the following property: when we consider every po int of a particular

reg i on to be an i nitia l condition of the optima l control p rob lem , a common

optima l contro l sequence and a common associated boundary sequence apply

to al l points within that reg ion. Formall y, we define the fol low i ng

subset of 1ft n

Defini tion ~+: A set R,R c IR A , is said to be a feedback contro l region

w i t h  contro l set ~~ cU , If the following properties hold:

(I) Consider any two points x1, x2 € lnt(R) . Suppose U(x1
) U w i t h

associated sw i tch time set 1(x1
) .  Then U ( x2) — U for some sw i tch

time set 1(x
2
).

( 1 1 )  5(x 1 )

(l ii )  Any control u E  ~2 that keeps the state inside R for a non-zero

interva l of time is an optima l control and there exists at least one

suc h con t r o l .

— - - ‘-
_
~~~Tr -.
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A fundamen tal yeocne tri cal ch ar acze ri .at ion of feedback control

reg ions  may be deduced dir e ctl y from the necessary c o n d it i o n s .  Th is

in teresting characterization , wh i ch shall subsequently be shown to be

‘.ery usefu l , i s  g i veti by the fol l o wi ng theorem.

____________ 
The feedback coa trol reg ions ,f 

~ f 1 n i t  ion ~ are convex

pol yhedr a l cones i n IR n .

Proof. See [5], page ll ~e.

Note that Theorem Li applies for arbitrary matr i ces B and D , not

only those special to our network model.

-- V n-V.. ~~~~~~~~~~~ 
‘
~~~~~~~~~~~~~ 

- —
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EXAMPLES OF THE BACK~J ARD CO~ STRUCTIO h OF THE FEEDBACK SPACE

A bas i c  observa t ion  wi th regard to feedback control regions is tha t

they are functions of the entire future sequence of controls which carry

any mem ber state optimally to zero. This genera l dependence of the current

V 
policy upon the future is the basic di l e r ~ma in computing optima l controls.

This probl em is often accoirmodated by the application of the princip le

or dvnar iic prograrrrn in g, which seeks to deterr,i rie the optima l control as

a function of the state by working backward from the fina l t im e. The

a l gorith m to be developed employs the spi r i t  of dynami c programming to

ena b l e  cons tr uc t ion of feedback co ntr ol reg io ns from an appropriate set of

op tima l trajectories run backward in time . These traj ectories are

fashioned to satisfy the necessary and sufficient conditions of Theorem I ,

as well as the costate boundary condition at t
f 

given in Corollary 2.

We motiva te the backward construction technique with several two

dimensiona l examples which introduce the bas i c  p r i n c i p les i nvolved .

Example 1

u~3~

,

~2
( 

- 
u
23~~

l.0

u~2 ~ 0.5

u~ 1~~ 0.5 
2

Fi gure 1. Si mp le S i ng le Destination Network

-— 

- -
-V 

V 
-~~~~~~~ TT V~~~ .44
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The network as pictured in Fiqure I has a sing le destin a tion , node 3;

hen e , we can o m i t  the destination superscript m 1 3 1s from the s t a t e  and

contro l var iables without confusion. For simplicity , we assume that the

inputs to the network are zero , so that the dynamics are :

• —u
13

(t) — u 12 (t) 
-
~~ u ,1 (t)

( 4 7)
—u .~~(t) + u12 (t) 

— u,1 (t)

~-J t h  control con str ai nt s as indic a ted in Fi qure 1 . The cost function is

the t o t a l  de lay

t f

D = J (x 1 (t) + x
2
(t)}dt. (4 8)

t o

Let the vector notation be

U 12
1* \

~ I 
I

U
13

U
2 3

We wish to find the optima l control which drives any state

x ( t
0

) >0 to x(t~) — 0 while minimizing D .

As our intent is to work backward from the f ina l time , we consider

all possible situations which may occur over the fina l time interva l

(t f _ 1 .t f ) w i t h  respect to the s ta te  var iab l es x 1 and

0, x2(r) — ~ 2
(~~

) 0, T € (t f_ 1~ t f).

V .  
- —~~ -

~~~~~~~~~~~~~~~~~~~~~~
-- 

~~~~~~~~~~~~~
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This situation is dep icted in Fi qu e ‘ . ~‘e bec ~i n  by considering the

t i - - c  peri od [:
f 1 ~ t f J m a  general sense a i  Ut  a c t u a l l y f i x i n g  the

-~ .i tchin .i t im e t f l ~ 
Thi s s sim p l y the t~~ e p~ r im J corresponding to

the fina l bang -bang optim a l control which bri n - : s the state to zero with

X~~~~t f
) aau x2~~t f) = 0. ~e i~~~ ~~~~ o a i  t o ~ i~~J i i

is a costate satisfying the necessary cond it ic’n s for which this S itu a tion

• is upt ”al ; and if so , to find the val ue of the opti~ial con trol. The

I in ei r ~‘re~iram to “c so l ved on T € [ t - 1  ~t f 1 5

= AR G M l h  
~~~~~~~~ 

+

uEU -

= ARG M IN [ 2(r) 
- .\

1
(T))u 12 (r) + 

1
( t )  -

u€U

— X
1
(r)u

13
(T) — X 2 ( r ) u 23

(~~) 1.  (49)

Now , the s t ip u la t ion z
1 

< 0 t e l l s  us fro m Coro l lary  2 that

A 1 (t f
) 0 (50)

and s ince x1 
is on an in ter ior  arc , Equa t ion (34) gives

k l
(T )  = —l t € [tf_ 1~ t f] . (5 1)

Th is is shown in Figure 2. Now, s i n c e  we s p e c i f y x2 
= 0 on t h i s

interva l , its costa te equation is

—d \
2
(-r) 1 di + dn 2

(r) (52)

d~2(r) ~~
0

\
2(tf) p

2 
free Vt E Lt f .1 .t f)

-.—.~~~~ — —--V.

-V- V-V -_V -- V•_IVV ~~~~~~~~~~~ ~~~~~~~~~~ -_- _._ —
“V 

~~~~~~~~~~~~~
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x ’

X IN

I 
I

/ / ,‘ ~ t

t f _ 2  t f_ ) t f

Figure 2 : State - costate Trajectory Pair
for Example 1 , Case C i )

~~~~~~~~
— 

~~~
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~~~~~~~~~~~~ • - 
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wher e -‘.. is a possibl y discontinuous fu ncticn. We now submi t that

t~-.e cos tat-e va lue \
2
(r) = 

~~~~ 
= o . -t E [ t f ~~~~. t

f
]~~ satisfies the

neces sary cond iYon s and is such t nat  there e x i s t s an optima l solution

for -.-.nich < 0 and = 0. First l y, the fina l cond i t i on

= U is  accep tao le  since tne necessary cor viit ions leave

enti rel y f ree; a lso , the choice of d1
2
(T) = -dT g i ves X

2
( T )  = 0

V through Equation (52). Now , the reader may read ily verif y tha t

= 0. E [t f 1 ~~t f
] is the on ly possible value which a n I o~,s x2

(-~) = 0

o~~~i ma1 l y s ince A 2 (r) > 0 and x 2 ( )  < 3 necessari iy i m p l y that

< 0 anJ  x 2 (-t ) > 0 respectivel y. W i : h tne cos t a tes  so de te r m ined ,

one solut ion to (49 )  is

u(t) = (0.5, 0, 1.0 , 3~ 5) T (~~3)

1 .5 ; x
2
(
~
)

r € [tf_1~~tf].

We emphasize that the above solution is only one among an infinite

set of solut ions to (49). However , It is the so lu t ion  which we are

seeking. We now make an important observation regard ing this solution.

Since \
~~

(t )  = -l and X
2

( t )  = 0 for € [t f 1~~t f
]~ t he contro l (53)

remains opt ima l on t € (-a~,t f
]. But as t f_ 1 

- , ~1 (tf_ 1 ) 
-m 

~~~.

Th inking now in forward time , this i mplies that any initi a l  condition

on the x 1 - axis can be brought to zero opt imally with the contro l

specified in (53). Therefore , the axis is a feedback contro l reg ion

___- 

-- TT~~~~~ 
_
~~~~~~1 ~~~~~~~ _ _~~~~~~~i 1I
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in the sense of Defini tion 4 for wh ich  we have :

R = {x I x2 
= 0)

whe re

U = ((0.5, 0, 1 .3 , o .5)
T :V (54)

5 =

0 = (0.5, 0, 1.0 , 3 •5 )
T~

We have therefore deter ~r3ned c? e ~m~ima l f ee~~ack contro l fo r  al l

polnts on the x1—axis. This is  i nd i ca ted  in Fi gure 3.

Suppose now that we wish to consider a more genera l class of tra-

jectories associated w i t h  the end condition under discussion . What we

may do is to temporarily fix tf 1  and st i pula te that the contro l on

[t f_ 2 ,t f_ 1 ) has x2 nega t ive ;  that is , i n s i s t  that x
2 “leave the

boundary ” backward in time . As before , the in i t ia l  time t f_ 2 of the

segment (t f 2 ~ t f .1 ) is left free. The p rogram to be solved is (49)

wi th  r E Et f_ 2 , t f 1 ). Now, s ince x 1 is  on an interior arc across

t f 1 ~ by (3 4)  i ts costate mus t be continuous across t f 1~ that is

x 1 (t ~~~1) x 1 (t
1 ) tf 

— t f 1 . (55)

Since (52) allows for only positive jumps of A2 forwa rd in time ,

we have

A 2(tf_1
) — A2(t 1) 0 . (56)

-V  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . 
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/

o : ,  a 1 : ,  J t t~

~~ 
o ~~~~~ /~ 

u~3 1.0 u23 1.0
II  / 0~~ U 12 ~ 0.5 0 ~ U 21 ~~ 0.5

/ ~ ~- l-u 12+u 2~

~2 -1 ÷u 12 — u 21 
‘

= ( 0 5 0 1 0 0 5 ) T

x1- -1.5

Figure 3 Feedback Solut ion f o r  Example  1

L~- —-~— — 
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A l s o , si nce both x
1 

and x
2 are on interi or arcs on [t f 2 ~ t f 1 ).

Equation (34) g i v es

‘1~~
-t
~ 

= -l

~ ~~~~~~~~~ 157)
\ 2 ( t )  — i

The resul tant costate trajectory is depicted in Figure 2. We now

per form the m i n i m i z a t i o n  (49) fo r- E [ t f 2 ~ t f~~ ) .  S in c e

~ x 2 ( r)  > 0, -r € [t f_ 2~ t
f 1~ 

the so lu t ion  is

u ( r )  = (0.5, 0 ,  1.0 , •j)
T ( 5 8)

so that

I 

x 1 (t) -1.5 ; x 2 (r)  — - 0.5. (59)

Therefore , the optima l contro l g ives ~2
(~~) < 0, wh i c h  i s  the

situation which we desire. Once again , we see tha t the con tro l is

opt i ma l  for t € (-co,t f 1 ] .  Since 3, upon leaving the

a x i s  backward in time the state travels parallel to the l ine x 1 
- 3x 2 — 0

- 

- 

forever. Now , recall that t f_ 1 is essen ti a l l y  free . Therefore , f rom

anywhere on the x 1 axis the State leaves para l le l  to x 1 
- 3x 2 

— 0 with

under l ying optimal control (58) . Th i nking now in forward time , th i s

implies that any Initial condition lying in the region between the line

- 3x 2 — 0 and the x1 -axis (not inc luding the x~ —axis) may be

-

. 
— brought optimally to the x 1 -axis wi th the con t ro l (58). See Figure 3.

Once the state reaches the x1 -axi s , the optima l control which subsequently

—- -— -V--V .- — ----V---
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take s the state to zero is g iven by ~5 3 ) .

Based upon this log ic we may now readily construct the following

f eedback cont ro l  reg ion :

x lK — {x 0 <  x, ~~~~~
—

~
—-

V)

w h e r e

U = ( ( 0 .5 ,  0, 1.0 , 1~~0)
T
, (0.5. 0, 1.0 , 05)

T}

B = { [ ~~~~, (x 2
} }

= (o.5, 0, 1.0, 1.0)1 (6 0)

W i t h  the two feedback con trol  re g io ns jus t constructed we have
x

managed to f i l l  out the reg ion Cx 0 ~~~ ~ -~-} with op tima l controls.

< 0, x
1
(-r ) = ~ 1

(r) = 0, -r € [t f 1 ~ t f
) .

This si tuation is the same as (i) wi th the roles of x1 and x2

simply reversed. If we le t x 2 leave the bound a r y  f i r s t  backward i n

t ime , we may construct a feedback contro l region cons is t ing of the

x2— axi s  in a fashion analogous to that of (i). If we subsequen tly allow

to leave the boundary backward i n time , we may construct the feedback

co nt ro l  reg ion Cx I 0 < ~~~~~~~~~ } .  These reg ions and associa ted optima l

controls are illustrated in Fi gure 3.

( i i i )  
~~

(r) < 0, ~2(-r) < 0, -r € [t f_ 1 .t f
].
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We are considering the situatio n in which both states go to zero

at t f. Since x
1 and are on interior arcs over this time int erval ,

C o r o l l a ry 2 g i v e s

‘I~~~f ~2~~ t 
= 0

and f rom Equation (34)

~2 (r) 
= -l E [t f 1 ~~t f

] . ( 62 )

He nce , the costates are always equa l ove r this time interval. The so l-

u tion to the linea r program (49) on [tf 1 . t f ] is:

u
13

(T )  = 1.0 u
23

( r )  — 1.0 (63)

0 < u 12 (r )  <0.5 0 < u21 (t) < 0.5

so that

— —1.0 — u 12 (t) + u21 (-r ) (64)

— —P.O + u 12
( - r) - u21 ( r)

In th is  s i t ua t i on  we have encountered non-uni queness of the opt Ima l

contro l which we seek. The optima l va l ues of u~2 and u21 are com-

pletel y arbitrary within their constraints. The optima l directions with

which the state leaves the origin backward in time at tf l i e  be tween

3 and — 3, tha t is , between the lines x 1 
- 3x 2 0

and x2 
- 3x 1 

= 0. Moreove r , for any € ( ~~ t f] the entire set of

-V ——--~~~ - ~
--V——--- 

=_ ,_J-_ ~~~~~~~~ — ~~~~~~~~~~
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controls and associated directions in the stat” space remain optimal.

As before , we now tr ?mslate this inform ation to forward tim e and recog-

nize tha t for amy point l y ing be tween the line s x 1 — 3x 2 =0 and

- 3’<~ 
= 0 (not inc lud ing these l i n e s )  :~ :c~ p 1e te set of cantro~ s

(63) is optimal. Therefore , we may construc t tl’e follow i ng feedback

con trol r eg io n (u. [a ,b] means that any va l ue of u. between a

and b is optimal):

x
R = { x  I ~~ < x1 

< 3x~ } ( 6 5)

w here

U = (([0,3.5], ~~~~~~~ t~~ 3 ,

5

cz = {((o ,c.5~,(i ,c.5:. ,0.~~.3)
T}

This region is illustra ted in F~gure  3.

Having completed all three cases in this fashion we have filled up

the entire state space with feedback control reg ions. The specification

of the ootima l feedback contro l is therefore complete.

0 Examp l e I.

Example 2. The network is the same as for Examp le 1 , but the cost

functiona l is taken as the wei ghted delay

tf

{2x 1 (t) 
.,. x2

(t))~it. 
( 6 6)
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As in Example 1 , we take the approach of workin g backward from the

final t i.~re . beginning with the three pos sible s itu.Ilio n s which ma~ occur

at that tine .

~~~~~ 
— 0 , x,(~~ 

= 0 , €

The l ine ar  program to be solv ed over the f in a l  tim e i n te rva l  I € (  t f_ 1 . tf]

is (49) with \~~(r) and \,(r) appropriately determined . The fina l

condition (~ J) applies , but since the ~ei ght ing on x~ i s  = 2 ,

the appropriate differential equation for is

= —2 r € [tf 1 . tf
] . ( 6 7)

Now , A2(-r ) is determined in the same fash ion as in case ( i )  of

Example 1. That is , the va lue

A 2(t) 
= A

2
(t) = a € (t f 1 . tf

) ( 68)

allow s the solution to (49) to be such tha t x2 (-r ) 0, t € [t f_ 1~ t f ].

Consequently, the optima l control (54) applies here. The feedback

control reg ion on the x 1-axis is t~ zrefore the same as (54). See Figure 4.

Let us now allow x 2 to leave the boundary backward in time at

some time t f_ 1~ In this case we have

A 1 (t f _ J ) — X 1 (t _ 1 ) — 2( t f 
— t f_ 1 ) 

(69 )

— A 2 (t ~ _ 1 ) — 0.

—V--a 
V —_

~

_-
~~ 

.
~~~

- - - - - ‘~~ - ‘S~~~ - .
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u (0 10~5, 1~0, j~Q) T

-- 
~~~~

X2

“ - .  J~.<’J\ 
U : ( O.S O l O l O )T

o ~, t -1.5
0.x 

~

‘ 
x 2~~~ -0.5

tf

~~~~~ 

~~~~~~U:(O.5,O,~~~~1.O)
T

u = (0.5,0,1.0,0.5 )T

xl: - 1.5

Figure 4 Feedback Solution for Example 2

1 _  -~~:i:::. 
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Since both x 1 and x2 are on interior arcs over this interval , t h e i r

differential equation s are

A (r) -2 1

I E (tf 2 . t
f~~
) . (70)

= —l

Also , as before , all that matters in the solution of the linear prog ram

is that k
1
(r) > A .,(-r) > 0, r € [tf2 . t f 1 ). Therefore , the so lu ti on

i s  g i ven by (58) and the feedback con t ro l reg ion Cx 0 < x
2 < T

i_ }

is as specified in (60). See Fi gu re 4 .

(ii) x2(t) < 0, x
1
(-r ) ( t)  = 0, t € [t f _ 1 ) t

f ] *

The de ta i l s  of th is s i tuat ion a re dep icted in Figure 5.

We know from Corollary 2 tha t

A2(tf) — 0 (7 1)

and from (34) that

A 2 (-r ) — — l -t € (t
f 1~~t f ]. (72)

We now may f i nd by the process of el Im ina tion that the onl y value of

€ (t f _ J ~ t f ] for wh ich 0 is opt ima l is:

A 1 (T) — X 1
(r) 0 € [t f_ 1~~tf

]. (73)

-V ~~~~~ — _ ~~~~~~~~~~~~~~ ____ - —- -V — —.~~~~ . — -V..— — — -
- ---a •
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-0.5 ’ I

I X 2
I I I

I I

I I
I I
I I

—I
I~~~~~~~~~~~~ 

t

Figure 5 : State - Costate Trajectory Pair
for Example 2 , Case (ii )
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I t  i s  e a s i l y  shown that A
1
(r) as g i ven in (73) satisfies the necessary

conditions. Therefore , the solution to (1+9) is the same as in Exampl e 1 ,

case (ii ), and the feedback contro l reg ion on the x2-axis is assi gned

i n i dentical fashion . See Figure 4.

As th e next step , we now sti p u l a te tha t x 1 leaves the bound ary

backward in time at t f j • Sinc e x
2(t f 1 ) > 0

‘2~~ f-l~ 
= 

~2~~ f-1~ 
= t f 

- t f 1 • (74)

Since costate jumps can only be pos i tive in forward time , we mus t have

A
1
(tf_ 1 ) = o. (75)

Also , since x1 (t) > 0, x2
(t) > 0, r E [t f2 , tf..1 ) ,

A
1

(r )  =

Vt € [tf 2~ tf_ 1 ). (76)

A
2
(-r) -l

See Fi gure 5. We now not i ce a fundamental diffe rence between this

and the previous situations. At some time before tf_ 1 the svgn of

(A 1
(-r ) A2

( - t ) )  chcmges, which imp les that the solution to the linear

progr~n ohmges at that t ime . There fore , t~ _2 is not allow ed to run

to , but is ac tuall y the t i m e  at which the costates cross and the

control switches. The optimal controls and state velocities on ei ther

side of the switch are : 
-

~

_

~

__

~

‘L



—--- .----- ---——-- -— - — - V - V  -- -- - V - - - -V- -V--V -V V _ _ _ _ _

— “5 -

Vt € [tf_ 2 ,t f_ 1 ).

= (o , o.s, i . o . 1 . 0 ) 1 
(77)

— -0.5 ; 
~

.. - 1 . 5 .  (78)

Vt € f t f 3 . t f _ )

~. = (0 .5 ,  2
, l . ) . ~.c (7’)

-1.5 ; x~ = -0 .5 .  (30)

The rel ationship between the states and x2 at t f 2  may be

calcula ted as follows :

\
1 (tf_2) = X 1 (t f_ 1 ) + 2(t f 2 

—

(8 1 )
= A

2(t~ _ 1 ) + (t f 2  
— t f 1 )

but

A )(t f_ 1 ) 0

(82)
A
2
(t f 1 ) = (t~~~1 

— t f)

The cross ing condition X 1 (t f..2 ) A2 (t f 2 ~ im ol ies from (81) and (82)

that

t f_ 2  — t f_ 1 — t f_ 1 
— t f - (83)

—.
- - —--V 

- .-- -=
~~~~~~~~~~

—_. - 

-- 
~~~~~~ ~~~~~~~
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N ow

x1 (t f.~~) x 1 (t~ ~ 
+ 3.5(t f., — t f_ 1 )

(84)
= V\

2
¼ t

f ~~~ ~ 
1
~~~

’ f-2 
-V t f  1 ’

but

x 1~~t f _ 1 ) =

(95)

x,(t
f 1

) I .5 (t f 1  
— t f

)

Fi nally, t8 3) and (84) g ive

x2(tf_2
) - 6x 1 (t f 2

) o. (86)

Tha t is , the switch of con tro l corresponding to the time t f 2  alw ays

occurs when the state reaches the line (86). There fore , backward in

time the state leaves from anywhere on the x2 axis wi th opt ima l

con t ro l (77) and associated rate (78) . The d i rec t i on  of t rave l i s

actuall y parallel to the line x2 
- 3x 1 

= 0. Upon reaching the line

x 2 
- 6x

~ 
— 0, the optima l con t ro l switches to (79) and the state travels

parallel to the line x
1 

- 3x2 — 0 forever. This sequence is illus-

trated for a sampled trajectory whose portions are l abeled 1 2 , 3

in Fi gures 4 and 5•

From these observations , the follo wing may be inferred by thinking

in forward time : The t,opitrol (7?) is op tima l ~~y w~tere within the mag-ion

- — 
- -V ~~~~~~~~~~~~~~~~~~ 

—T~—’~
---— -’-t?r -‘ 

—- V . — - - — -

~~~~~~ 

-V-V.—- 
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s--i ~~~~ x2-~~ Z’~i t~~2 ~~~~~~~~ x
2 

- &x 1 
= 0~ r.c-; including the

x
2-~~~~ ~~~~ in Fi gure 4) .  ~~~ c~ntrv1 (?~~, ~ s cp~ i’-~al c~.yw’rzer e

wi~~:i”. t;
~~ ~~~~~ •~~ d~~~ :-•~ ~~~ i~~~CS x2 

- 6x
1 

0 ~~d x 1 
- 3x 2 — 0

io~ including th~ for r,rer l~r.e. This reg ion is a lso in dica ted in Fi gure  4.

The re fo re , we can construct tne following two feeoback contro l reg ions :

R C x  I 0 < X l (87)

where

= ((0, 0.5, 1.0 , 1.0)
1
, (0, 0.5. 0-5 , 1 0 )

1)

S = ~~ ø ) ,  (x
2

)}

- (0 , 0.5. 1.0 , 1.0)
1

and
x
2 -R = Cx I —
~~~ 

< < 3x., (88)

where

u - ((0.5, 0, 1.0 , 1.0)
1
, (0 , 0.5 , 1 .0, 1.0)

1
, (0, 0.5, 0.5, 1 3 )

T}

S — (( 0) ,  ( 0 ), { X
2

} }

— (0.5, 0, 1.0 , 10 )
T

Since the entire state space has now been filled up with feedback

con tro l reg io n s , the specif ication of the feedback solution is now

comp lete .

0 Example 2.

- - 
— . .-V~ - . -V V - -V
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We icw sur~rrari:c t h-~ co ’t~~~ts of the preceding examp~ es . By st ar t in g

at th~ fi nal tia ~ t f ~~C have al i c.~ed state variables to leave the

bounda ry x = 0 backward in time and have computed the corresponding

optima l trajectories as time runs to minus in f i n i t y .  In the instances

~nen the optima l con t ro l did not swi to n . V~~ ~-;e re able to con5tru ct one

feedback control reg ion . When the op t — al contro l did s\-,- it ch , as in

case (ii)  of Example 2 . two adjacent feecback control reqion s were

ccn ~~t ru tc~~. B y ~o is  de r i ng  ~~~~~~ ~~~~~ ~~~~ ~er~ ab~ c t~ f~ up t~ e

ent i re  s t a t e  space wi t h feedback con t ro l reg ions , thus p rov id ing  the

feedback solut i on .

Note that all we need for the final specification of the feedback

solu tion are the geometrica l descri pt ions of the feedback con t rol reg ion

(R’ s) and their associated optima l control sets (a’s). The sequences

of op tima l con t rols (U’s) and the boundary sequences (8’ s) are invo l ved

in an intermediate fashion .
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D e f i n i t i o n  ~ : I ~ (x !  ~! (~~) d • ~ It  . ) i ~ the - .~~~ t of
p ~ p+ 1

state vai l a1 I ~ - . r.i ~ ~
. I in s~ on in te r icr ~i ru- . cii [ t , t

p ps- I

D p f i n i t j ~~r, £ 
~~ (~~~~

-
~ ~~~ ~ ~nd x -~ i c  des i~ n- i~ c’d t~ l~’.i~-~’ rb .’ - . - - — ) p

boundary backward in I i  me at  t I -

D~!t I n I t ,o n 7: c a r d i na l i t y  of

card i r~al i ty 1 -p p

Ot ’ I n i t ion 8: — the’ Ieedba~ k con t ro l ret~ ion cons t m c  ted I mom the’p -

opt i na I t raj ec to r e s on the ~~qmer1 t [ t • t ) -p p+l

The alqor lthm Is characterized by the recurs i ve execution of a

basic in which one or more feedback contr ol reqion s ore co n c t r u c t e d

-V - f rom a p re v i o u s l y constructed feedback con t ro l req ion of lowe r dimension .

To desc ri be a sin g le recursive step of the al gor ithm we beg in with the

feedback cont rol reg ion wh i ch has been constructed in a previous

step. On the current backward optima l trajectori es the state variabl es

of I are on interior arcs and those of S ar e  on boundary arcs .
p p

Hence , R c IR ~~, whe re we assume that s n. The ba sic act ionp p

of each s tep of the al gorithm is to allow a subset of state

- . vari ables in S to leave the boundary backward in time simu ltaneous l y;
p 

a

— thjt is , allow the state trajectory to leave R C IR ~ and trave l
p

directl y into IR ~ p . The set of state vari abl e s whi ch dre subsequentl y

on interior arcs Is 1 p-i

_ 
_ _  

_ 
_ _ _  

A
~~~~~~~ _ _ _ _  _______  - _ _ _ _ _ _ _ _ _ _ _ _



- 51 -

I n orde r to formulate the al q ori th m we ~‘ust make the following

assumption : it io opt umal f-’~ 
a~~ o.- :-~:u J:~~:~ ‘-~ th~~’a in

~~~~ off o~
’ t~ o how~.dar~i es time ~~~~ to ~~-:us infinity . T h i s

is equ iva len t  to assuming that once a s t a t e  v a r i a b l e  reaches the boundary

in forward time i t is always optima l for it to rem ain on the boundary .

This assumption is certainl y not always valid , and a counter-examp le is p re-

sented in Example 3.7 of [5 ] ,  p.I97 . The most genera l class of problems

for  ~h iu ~i this ostumpti on ho iJ~ I; not c u r r e n t l y know n . ¶ lr~.;evo r , in  ( 5 ] p . 2 6 3 ,

it is sh o -e i to be v a lid for the specific class of sing le destination

network prob l ems with all u n i t , iq htinq s in th~ cost functional.

We now provide the rule wh i ch sti pulate s the complete set of steps wh i ch

is to be executed with respect to R
p

Cons ~. Jor  a l l  of th~ ~‘~i to 
~ 

w ::o: ~: f a t i c ~:s o f  i ts

~~~Zoo’ont.-~ to~~-n l~ 2,... ,n-c at a tHe . St~ :s ~ —o to ~ o executed for

C equal to oac z on~ of t~:e ouL-s~ t.s ~; ~ ‘te~~~~ e~ . or a total of

2 p 
- 1 steps .

We now describe a sing le step of the al gor ithm by choosIng a particular

C c S .  Fi gure 6 is used to i l l u s t r a t e  this de sc r i pt ion .

STEP OF THE ALGORITHM

- Opera tion I Partition 
~ 

into su ; i J ~ :5 with respect to C .

The definition of subreg ion is de ferred until Operation 3 since not i ons

are require d wh i ch are deve l oped in the interim. Subreg ions , lik e feedback

- —-  -~~~~ 
- 

~~~~~~~~~ - 
. .
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a.+p

~~~~~ 
P

- ~ 

1
~ -co~~ a-co

Wp...1 - ,

€ X p ~ pY~
” 

-V 
Rp (~C~ )

/ 4 ~~~~~~~~

Figure 6 Construction of Succes sive Feedback Control Regions
from Subregion R~ (1c ~

) 
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con t ro l reg ions , are con ve x po lv n ei r al cones ~~ - :  ~ne method by wh i ch

the part i tion may be perform ed is presented in [51. p. 165 . For the present ,

le t us assume that R has been partitioned i n to  $ subreg ions and

denote them by R 1 ( C ) ,  ~~ ( . C ) , . . . ,  p . C ) ,  ~-.---- ere the dependence of

the partition on the set C is indicated H :~~enc ;-i e si s. 1Je now

pe rform the subsequen t operations of the step fo r each of the s sub-

reg ions t aken one at a time .

- Op eraticn 2 Consider the typ i ca l  s ub reg ion ~~(L) . We now call

for the state variables in .C to leave back,~a~ d in time from each
p

of a fi nite set of poi nts of R (C ) taken one at a time . This set of
p p

points is denoted by X (.C ) and as in the case of sub reg io ns the

defi nition is deferred until Operation 3. Let us now focus attention

on a typ ical such point x € X (C ) .  We assu’-e that x has been
~p p p  -p

reached through a backward optima l trajectory constructed from a sequen ce

of previous steps , and that the time at wh i ch x is reached along

th i s t rajec tory i s  ~~ Associa ted w ith x at t~ is some possibly

n onun i que set of costate vectors . We are in te res ted in onl y those

costate vectors wh i ch allow for the optima l detarture of the state var iab les

in C from the boundary backward in time at t , known appropriatel y

as leai.’e—the—boundary costuzt~ s. This se t may also be nonun i que , i n w h i c h

case it w i l l  in fact be inf i ni te. It is show ’ in [5] ,  p.189 , that we need

only conside r a certa in finite subset of the total leave-the-boundary

costa te  set and a method for de te rmin ing  t h i s  c a r t i c u l a r  set of cos ta te

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

. 
~~~~~~~~~~~~~~~~~~
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vec tors , or for showing that no such costate vectors exist , is presented.

We assume now that this set has been found and denote it by A~ .

— Operation .3 Cons ider the typical leave—the-boundary costate

A € A . We now consider the situation in which the state variables in-p p

C leave the subreg ion R~ ( C )  backward in time from the point x .

We note that the set of state variables which are t rav eling on boundary

arcs backward in tim e subsequen t to the depa r tu re of is

= 8 £ and the set on interior arcs is I = I U £ -p-i p p p l  p p

We mus t now solve the followin g prob lem :

- Given the state x and the cost-a te A at time t find all
- -p -p p —

optimal trajector ies bac1o~ard in time on r € (—‘°, t~~) for which

= 0 for all x~ € 5
p i ~~~~ . 

determine that no such point

trajectory ex~8ts.

According to assumption stated ear l ier  in th is  sect ion it is optima l

for a l l  of the state var ia bles of 1p 1  to remain off of the boundary

for the entire time interva l t € ~~~~~~~~ Therefore, by the necessar y

condi t ions (which are also su f f i c ien t )  we know tha t any (and a l l )

t ra jec tor ies  which solve the above problem must have a contro l which

sa t i s f ies  the following , henceforth referre d to as the globa l optimiz-

ation problem:

Find a 1 1

— ARG MIN XT( ) ( )  ARC MIPI XTUB ( )  (89)
u(r)ELt u (t)EU



- 5; —

wh er e

= (90)

~~~ ~ . (~ 1)
I p - :

—c1\~~(r) ~~dt ÷ d’~!~ t) ~I I

(°2)
• 

. 

r I p — i

d -~
-
~(t~ ~~O

y’T € ( -co .t ) .
0

Oi~r t~ sk H thm r~~f o re to f i nd  ~~ so l ut io ns  to the oloha l c p t i m i z —

ation prohiem which satisfy the constrairts x~ (T) 0 for a ll

xl € 8
p 1  

and all t € (-m ,t )  or show tha t no such solution exists.

To 9nd solu tion s requires pro ducing va i ues of ~~~ (T )  such tha t

is optima l for all € 5 and a ’!  r € (-— .t  ) .  A method forI o-1 0

so!ving this prob l em is presented in Apoeridix A .

If i t is shown that no solution exists we i mmediatel y termina te

this step. On the other hand assu me that using the technique of Appendix A

we have ar rived at a sequence of optima l switchi ng times and optima l control

sets on t € (-~°,t ). Suppose that q switches occur in the optima l

contro l over this Interva l and denote the times at which the switches occur

by t ,.  . . ,t ,t , where the control rem ian s unchanaed from time
p-q p-2 p-i

tp_q to minus infinity. A ll these switc hing tim es the backward optima l

t rajectory i n tersec ts  the h yp e r s u r f a c e s  of va ri ous di mens i o ns wh i c h  sepa ra t e

__ - -~~~-V . - —--- -V — 

- 

- 
~~~~~~~

- 
~~~~~~~~~~~~~~~~~~~~ 
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adjacent feedback contro l reg ions. The points of intersection are

referred to as br eakpoints and the hypersurfaces , which are convex

poly hedra l cones of dimension a + a - 1 , are referred to as brea1c~alZ.s .

We denote by w the breakwa ll whi ch is encountered at the s-thp-s

s.- .itch time t and denote the entire set of breakwaHs encounteredp-s

on € (-oo~~t~~) by

U = (w w ,wp—q p— 2 p—i

We shall show how to construct U later or, in this operation.

Define ~ to be the conrvle t~ set of opt ima l contro ls  onp-s -V

-r € (t ,t ) which satisf y the constraints ~~~~ 0 for a llp-s p—s+i I

x -
~ € S , or formall y
I p-I

-s ~ {u* = ARG M IN AT(t)B u(t)p 
5
~~_€U

L c~ (t)~ O Vx~€5~ _ 1

t € [t , t .5÷1 ) where X( - r ) is determined by (90)-(92) and

A ranges over all members of :~ } .
-p p

According l y, the collection of optima l control sets on T € (-= .t~ ) is

denoted

~ ~~
2_ø.~~~p_ q ’

where ~2 is the solution set which applies from time tp_q to minus
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infinity . We are now able to prov i de various d-~~ai !s which have been

left unspecified until now. First , the def i nitions of subreg ion ari d the set

of ooints X~(C~) c R~ (C~) mentioned in Operati ons 1 and 2.

Def i nition 9: Supp~~e t~e s~~t of s t ~ z e . ~~r~~~ le~ £ i~ de5 i~~ 3ted t~

leave the feedback contro l region R backward i n  t i m e . Then a ‘~~-~on

R (C ) of R is the set of all those points in R which have taken
• p p  p p

as the point of departure of .C result in a co~-nx n and a comir-on U.

Definition 10: If no con t ro l switches occur on € (-“ ,t ) then X (C
p p p

consists of exactly one po int , and this may be ci-’~ point of R (.C).

If one or more control switches occur (i.e., one or more breakw all s are

encountered) then X ( C ) consists of exactl y one point from each edge

of P (.C), where we may choose o~~ point of a g iven edge.

Therefore , if no contro l switches occur we have exhausted X (.C )

by the consideration of the sing le point ~~ On the other hand , if one

or more contro l sw i tches occur then we must repeat Operations 2 and 3

for all of the remaining points of

By the definition of subregion we shal l obtain the same collection

of optima l control sets ~ and encounter the sane set of breakwa lls W

for every point in X ( C ~ ) .  However , the breakpoint corresponding to a

g iven breakwa ll will  in general be different for optima l trajectories

emanating from different points of X~ (.C ) or for different optima l

• .

~~~~~
--. II . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ 
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( i i )  q ‘ 0

In th is  ca s e d ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ,•~ an~ip— q p—2 p- I
U (W

p_ q~ ,W 2 , W
1
}. Form the sequence of q+l adjacent convex

pol yhedra l cones

= Co(~ (C ) Li w )/R (2
p- I p p p- i p p

R = Co(w U w  )/wp-2 p-i p-2 p-i

R Co(w )/wp-q p—q +l p-q p-q+1

R = Co(w U V  )/w --= p-q -= p-q

it is proven in [5], p.176 , that R
p 1 I R~~2~ •••~ Rp_ q are feedback control

reg ions with associated optima l contro l sets p—i p-Z p—q

respectivel y. These are referred to as bre ~~~~~~~~ control regions.

Here R is the non—break ~~~~~~~~~~~~~~~ ccr.trc - re:ion with associated

optima l control set a ,,. See Appendix B for proof.

. Step of Algorithm

Note that upon the completion of a sing le step q+l feedback

control reg ions have been constructed : exactly one non-break feedback

con tro l region and q break feedback control reg ions , 0 ~~q < =.

We may refer back to Example 2 to find simp le examples of both type of

feedback control reg ions: the reg ion specified in (87) is a break

feedback control reg ion and tha t of (88) is of the non-break variety.

_ _  - ~~~— ~~~~- -V —I- -
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are bein g conservative in insis ting that £ be set equal successive l y

to all possible non-empty subsets of B~ , but no method is currentl y

known for the a priori elminin a tion of those subsets which w i l l  p rod uce

orev ious lv  constructed ~“cr ions .  L
~r c.

..e-V,e r , -~ur t~-nroug i-n~~st a l l c - s u~

to s t a t e  t he f o l l ow ing :

Theorem 5. Complete execution of the construct i ve dynamic orogrammina

al gor i t hm ~-.- i I i result  in the sp~ ci f i c a t i o n  of t ie  o p t i m a i feedback con-

t rol ove r the ent i re  a d m i s s i b l e  s t a t e  space .

Proof: Feedback con t ro l reg ions are constructed for e~’ery conceiv-

abl e type of optima l trajectory i n  t e rms  of sequences of state vari ables

on and off boundary arcs . Moreove r , we are findin g the largest such reg io ns

since we are taking i nto accoun t all optima l controls correspondin g to

each sequence . The re fore , the feedback control reg ion s constructe d must

cover the ent ire admiss ib l e s tate space .

0~~~

Summarizin g, the following questions wh i ch have been left un resolved

in the curren t discu ssion :

1) The validity of the assumption that it is optima l for all the state

variables in I to remain off the boundary as time runs to
p-I

minus infinity.

2) Par titioning R into subreg ions (Operat i on I)

L. - .

~~
- 

-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _ _ _ _ _ _ _ _ _ _
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3) Determining the leave -the-boun dari costate valt.~es (Operation 2).

~ Deter —i-’at i on of g l oba l optir’ a 1
~~t-,- (Op~ ratio ~ 3 — par t  (b) of

Appendix A).

As tne ai gorithm is pres en te~ me re i n p r i m c ole onl y -.~e shall not

enter into det a i l s regarding off-line calculation or on-line implemen t-

ation . Howeve r , two points are worth y of mention . First , the number of

s te m s  to be oerforne d and the nu~ b-~r ml feed hac i con t ro l re m io ns c~ n s —

tructed w i l l  be very large for reason aole size networks . In constructing a

n umeric s) version of the al gorith m we ust there fore be concerned w ith

the efficiency of the various operatio ~is . Secondly , a large amoun t of

computer storage w i l l  be required to inolernent the solution in real time .

The feedb ack con trol reg ions must be soec i fied by a set of linear inequa l-

ities wh i ch in general may be ve ry larce , and the optima l controls within

these reg ions must also be specified. This Situation illustrates the

tradeoff wh i ch occurs between the storage wh i ch is required for the on-

line implementation of feedback solut ion s calculated off—line and the

amoun t of ca l culation involve d in the repeated on-line calculation of

open-loop solutions.

- - 

-

. 
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V I I .  CO~ICLU S I0I S

We have cons ide red the linear optima l control problem with linear

state and con t rol variable inequality constraints proposed in (21 as

a method of analv : ng dynamic rcut inc in data communication networks .

The conceptual structur e of the Cons tructive Dynamic Progr amm ing

A l gor~ thm has been presented for finding the feedback solution to this

problem when a ll the inputs to the network are assumed to be constan t

in time . Several required tasks of the algorith m pose comp lex quest ions

in themse l ves and are there fore left un resolved here . These questions

are confronted in detail in [51 and a forthcoming pape r by the authors ,

where in the case of sing le destination networks with a l l un i ty

wei ghtings in the cost functional simplifications arise wh i ch pe rmit

a numerica l formulation of the al gorithm.

- T r . ~~~~~~~: _ L~~~~~~~~ ~~ -i~~~~~4
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APPE N DIX A - COMPUTING BAC KWARD OPT IMA L TRAJECTORIES

Consider the following constrained o ~-mizatior~ ~roole’m (i.e . constrained

in s ta te )  in wh ich  the do not appear :

Find all

= ARC MIN 
- 

\~~(:)x (i) (A.))
u (r)€LI x-~EI~ _ 1

k st~bject to

= 0 Vx~ € 5
p -i (A.2)

where

X-~(t )  = appropriate component of (A.3)

I p -i

~~ (A . 1+)

‘
~~r €

The following is present ed without the p roof , which is t r i v i a l :

Theorem A.i Any sol ution to the g lobal optimization problem wh i ch

— satisfies cj!(r) 0 for all Xj € is also a solution to the

cons trained opt imization problem.

We are able to solve the constrained optimi Zat ion problem i mmediate l y

si nce we know all of the coefficients of (A.l) and the values of

for xl € 8p-l 
are not required . However , solu tion s to the constrained

L 

optimization problem may not be solutions to the globa l optimization

— problem. These observations suggest the following t’~o par t approach to

-V — - -V - -, - -V -V.- .-,—--—-V -V. 
~

-V - V-V;1.--V-V — 
- ~1— -V-V- ’-

~~~~ --- -Va -V--V-V- -_~ — — —- ----V —-V
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.r~ ’-V -V_iL~~ ~ L1 ooit~a~orW to tfre ~ g lobal o ; ~- z ~zr - -~~-: probl em w : f -~ -~ z s f ~j

= 0 ‘or al —i ~~? € ~ -
I I p 1

(a) Find all sol utions to the constrained optimizat ion problem .

(b) Prod uce va l ues of A~ (r), r ~ (-=~t~ ). for a l l  x~ E 82_ i  wh ich satisfy

t~” -‘~~~cary co~~~~~ior~ ~~~‘d such tha t al l  solutions to part (a)

are also solutions to the globa l optimization problem or show

that no such va l ues exist.

The above tasks were performed in a simple fashion for the examp les

of Section V . where d ue to the sma ll d im ensiona l ity of the problems we

were abl e to solve part (b) by insp ection. Of course , this is rarely

possib le , and a genera l method for solving part (b) , referred to as the

determination of g lobal op timality~ i s  presented i n  [5i , p.163.

We now turn our attention to the so lu t ion  of par t  (a) . Taking into

accoun t the dynamics (7) and integrating (A.!+) backwa rd i n time from t~,

we may re-wri te (A.1) - (A.L+) in terms of the underlying decision vector

U as fo l lows :

= ARG M IN (c + tc 1
)u ( r )  (A.5)

u (r)ELJ ’ °

2~~~~
(t )  <C (A.6)

= 
~.(t ) ~‘o (A.7)

= ~aj Vxt € 8p-l 
( A .8)

where b~ = row of B corresponding to x~

- - V  
- -—  

—
- - —~~~~~~~~~~ - - ~~~~~~~~~~~~~ - - —  -
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c x~ (t )b~-o I p - I

i p-i

c = .�. ct~.b~—i 
-<~ET 

1 1

I p- S I

and r is time running backward from t~ to minus in f i n i t y .

The presence of the constraints (A.8) prevents us from i mmediatel y

sp~- cif y in~ the optima l solution at ~~-.‘en t~~n~ in ter ms of L~ c ~o~ tut e~

as is possib le in the absence of these constraints. However , s in ce for

fixed t ( A. 5)  - ( A . 8)  is a linear program the Simplex techni que may

be applied to find a solution . Moreover , the cost function of (A.5) is

a l inear f unc t ion of the sing le i ndependent parameter i , wh i l e  the

cons traints are not a function of since a is constant. This is

precisel y the form which can be accon-rodated by parame tric linea r prog—

-V 
ramming wi th respect to the cos t coefficients. The solution proceeds

as follows :

Set -r = ~~, where ~ is so me smal l  pos it ive number which serves to

per turb all costate values by c~~6. We wish to start our solution at

time t -5 since we may have \~~(t ) 0 for some x~ € S , so t hat
p i p I p 1

the sol ut ion exac t ly a t t~, ma y no t corres pond to x -V
~ l eaving the bound-

ary . The number iS must be such that 0 < iS C t~~ 1, where t~,_ 1 is

the first break time to be encountered backward in time .

We now use the Simplex technique to solve the program at t = 5.

There are many l inear programming computer packages which may be enlisted

•_______ •__- ~~
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for th is task which u t i l i z e  efficient a l gor :nm ic forms of the Simplex

techn iq u e  to arrive at a sing le optima l extre .mum solution. Given this

s t a r t ing so lut ion wh ich we ca l l  y
~ _ 1 , most packages are also equipped

to emp loy parametr ic  l inea r programming ~o f ind the va lue of -r for

which the current solution ceases to be ooti ,m al as w e l l  as a new opt ima i

solution. These are the break tim e t and the optima l control up-i -p- 2

res pec t ivel y. We co nt inue in th is  fashio n to f i nd con t ro ls  and br eak

t i - ~cs ui~t il the 5o lut i on  rema ins the s a m e fct r a r b i t ’ - a r i l y  la rge.

This final solution is the con t ro l u -

The linearity of the point w i se m i n i m i z a t i o n  associated with the

necessary conditions has enabled us to find a sequence of optima l controls

on the time interva l (-co~~t~~) by the efficient technique of parametric

li near prog ranwning. However , in the descr iption of Operation 3, we ca ii

for all  optima l solutions on every time segment. Since we are dealing

w i th a l inear program , the s p e c i f i c a t i o n  of a l l  opt ima l so lu t ions is

equ iva lent to the specification of a l l  op t ima l extremum of the so lu t ion

set .  Unfortunatel y,  i t turns out that the prob lem of finding all the

optima l extremum solutions to a linear program is an extremely difficult

one. It is easily shown that g i ven an i n i t i a l  optima l extremum solution

this problem is equiva l ent to finding a l l  the vertices of a convex poly-

hedral set defined by a system of linear equa lity and inequality constraints.

Discussion of this prob l em has appeared n t ern i tte n t l y in the linea r

progra mm i ng literature since the early 1950 ’s , wh ere several  al gor i thms

based upon d ifferent approaches have been presented. However , none of

Li- -- 
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these methods has proven computation al l y efficient for a reasonabl y

large va r i e t y  of problems . The fundamental d i f f i c u l t y  which appears

to foil many algorithms , no matter what the i r  underl y ing a p p r o a ch, is

degeneracy in the origina l linear procram . As our problem is charac-

t ’ - r ized  by a high degree of degene racy , one would expec t poo r performan ce

from any of t hese a lgor i thms . Hence , i t  appears at th is  t ime that the

deve lopment of an e f f i c ien t  al gor i thm for the solut ion of th is  problem

is cont i ngen t upon the d iscovery  of -methods for reso l v ing  oegeneracy

in l inear  programming. As degeneracy is a ~r~ cu~ nt nu isan ce in most

l i near  progr amm i ng proced ures , this problem is the subject of much on—

goin g research . 
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APPENDIX B - CONSTRUCTING NON-BREAK FEEDBACK CONTROL REGIONS

Exac tly one non-break feedback contro l R is constructed in either of

the cases q = 0 or q ~ 1. If q = 0 then the s ta te  va r i ab l es  in

leave R (C ) backward in time with optim a l control set f~ and R
p p  -

~~ 
-=

is constructed adjacent to R(C
2
). Si m i l a r l y  if q ~ 1 then the state

va r i ab l es  in £ leave the breakwa l l  w backward in time wi th
p p-q

opt ima l contro l set ~ and R is  cons t r uc ted  adjacen t to w -
-~~~ -= p-q

In this discussion it is unnecessary to d i s t i n g u i s h  between these cases;

we therefore let R represent either the subregio n R ( C ) or the

breakwall w depending upon whe ther q = 0 or q ~ 1 respectively.

Theorem B .1 Suppose Q is the set of optima l control s with wh i ch

the s tate var iables .C~ leave R backward i n time . Then

R = Co(R U V  )/R-= p -= p

is the non-break feedback control reg ion with associated control set

ci in the sense of Defin ition 4.

Proof. We must show that items (i)- (iii) of Definition 4 app l y to

R and ~ - The s i tua t ion  is de picted in Figure B. l .

We prove item (iii) firs t. Consider x € R~ . Translate each ray

in V by plac ing Its orig in at x and call the translated set

V 1 {v ’ ,v ’ v ’ }  - Next form the conical reg ion &(x) = Co(x U V ’ )/x.
-

~~ 1 2  w

See Fi gure B . 1 . If C &(x) , then there exists a direction which is

— -- 
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some convex comb i nation of the members of V~ which takes to x.

Hence , for any x
1 € ‘t(x) there exists a u € -~ which takes 

~ l to X~

Now , R~~ = Co({k(x) I x € R }) since the sm~
’ iest convex set containi ng

{t(x) x € R~~ is c lea r ly R - Therefore , fo r  an y x
1 € R th ere

ex i s t s  so m e d i rec t ion  which is a convex combina t ion  of memo ers of V
-to

w h i c h  car r i es x
1 to some point x € R .  This is equivalent to say ing

th at for any x € R , there exists a u € ci such tha t x B u + a

carries to some point x E R .  Also , the trajectory rrm~ in s~~~ th i :

until it strikes R
-

~~ 
p

Now , let us select some x
1 

€ P and app l y any contro l U
1 

€ Ii

wh ich hel p s the s ta te wi thin P for a non-zero period of t ime A t .

Clearl y there exists such a contro l by the above argument. Denote by

the s tat e which resul ts af ter appl y ing u
1 for the time At. Then -‘

also b y the above argument there exists some contro l € ci which

takes x_2 to some poin t x
3 

€ R~ . See Fi gure B .l. The control u
2

i s  op t i ma l  s ince  ci i s  constructed such tha t any LI € is optima l

to move the state off of backward in time. Finally, U 1 i s  optima l

s ince € ci~~ and the trajectory segment x2 ~ 
in part of the

trajec tor y x
3 

-
~ 

~ l 
which leaves from R1,. We have therefore shown

tha t i tem (iii ) of Definition 4 is satisfied .

I tems C i )  and ( i i)  fo l low e a s i l y  from the fact that is itself

part of a feedback contro l reg i on .

0 Theorem B.l 
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